Farmer-Harvester: LLMQ Driven
Scalable BFT Consensus for
Permissionless P2P Networks

By: Andrew Nicholas Smith & Vinay Sawant

Title: [Andrew Nicholas Smith <Founder>, Vinay Sawant <Senior Systems Engineer & Director
of Protocol Research>]

Organization: Versatus Labs

Email: [Andrew Nicholas Smith <as@versatus.io>, Vinay Sawant <vs@versatus.io>]

Organization Email: info@yversatus.io

Website: versatus.io

Abstract

Scaling a blockchain network to greater than 1 million transactions per second, without
sacrificing security or decentralization, previously referred to as “The Blockchain Trilemma”, is
a difficult, though not impossible task. In order to scale throughput of transactions, while
maintaining the highest degree of security, fault tolerance, and the lowest time to finality
possible, a new approach to system design and architecture is necessary. In existing blockchain
networks, nodes propose blocks of transactions from the mempool, which other nodes then have
to iterate through and verify, one by one, before updating their local copy of the global state of
the network. This process is time consuming, and computationally expensive. It also makes it
difficult to scale transaction throughput in a secure fashion.

We propose a new design, in which transactions are processed and validated concurrently locally,
without the need for locks, and parallel across the network by Long Lived Masternode Quorums
(LLMQ) whose participants are elected randomly, at fixed intervals, and have dynamic staking
requirements derived from their reputation to enhance security. Blocks are then built from these
pre-processed/validated transactions, and certified by an LLMQ with a separate role in the
network. Under this model, nodes can scale local throughput, the network can scale network
throughput, while maintaining the highest degree of security possible, and a time to finality that
competes with the fastest modern networks available today. This model also ensures that the
network can scale with additional staking nodes, while also scaling as hardware improves.

Introduction

mailto:as@versatus.io
mailto:vs@versatus.io
mailto:info@versatus.io
http://www.versatus.io

Achieving scalable consensus in a peer-to-peer network, especially when faced with a significant
number of potentially malicious peers, remains a complex challenge[1]. Despite numerous
efforts in this domain, a truly successful solution has remained elusive[2]. In this paper, we
introduce a novel model designed to achieve decentralized Byzantine fault-tolerant consensus at
scale[3]. This model synergistically integrates vertical scalability mechanisms with a horizontally
scaling approach, setting new benchmarks in throughput. Our approach marries the efficiency of
left-right wrapped data structures with an innovative, optimistic strategy for transaction
validation. Furthermore, we incorporate a conflict-resolving, converging directed acyclic graph
within a network architecture that distinctly separates long-lived masternode quorums from
permissionless, stakeless miner nodes[4].

The protocol is structured around specialized subsets: transaction execution/processing quorumes,
block proposal & certification quorums, and conflict resolution & block consolidation nodes.
Each subset plays a pivotal role in maintaining the network's security, resistance to censorship,
and consistency, even while processing an impressive range of hundreds of thousands to millions
of transactions per second[5].

The transaction's journey begins with its allocation to an entry quorum, leveraging Maglev's
Hash Ring to ensure consistent allocation based on the signing account. Depending on various
factors like data locality and the quorum's current workload, transactions might be directed to a
processing quorum[6].

Within this framework, pending transactions are housed in a left-right wrapped mempool,
optimizing internal scheduling based on the validator processor/core's workload. Transactions
dependent on others remain in the mempool until their preceding transactions are validated.
Post-validation, nodes cast their votes to the active Harvester quorum. Upon achieving a
consensus (a minimum of 60% agreement within the responsible quorum), the transaction is
integrated into a proposal block, which is subsequently appended to the DAG.

Miners play a crucial role in consolidating proposal blocks into a unified reference point termed
the "Convergence Block," marking the round's conclusion[4]. This block, once validated by a
minimum of 60% of the active harvesters, is certified and becomes an immutable part of the
chain's history. The certification of a convergence block also signals a network-wide state
transition, reflecting the transactions within that block.

Our optimistic approach to transaction processing and validation means that nodes outside a
specific farmer quorum aren't burdened with validating every transaction in a block. Instead, the
responsibility of transaction validation is delegated to Farmer Quorums comprised of staking
nodes, with the Harvester Quorum acting as a secondary validation layer. This streamlined

process significantly reduces the consensus workload across a decentralized network, ensuring
consistent and highly available network state data[3].

Masternode Eligibility

For the optimistic transaction processing approach delineated in this paper to be effective, a
rigorous eligibility protocol is paramount. We advocate for masternodes to be qualified based on
a staking protocol. Historically, staking protocols have been instrumental in aligning economic
incentives, thereby fortifying peer-to-peer networks with robust security measures. While there
exists a plethora of proven staking protocols within Proof of Stake networks, the detailed
selection criteria for a specific staking protocol fall outside the purview of this discussion|[7][8].

Equally critical is the establishment of a protocol for the fair, randomized, and unpredictable
election or assignment of nodes to quorums[9]. Such a protocol is essential to preclude malicious
entities from exploiting the system, potentially compromising the network's integrity. If
malevolent actors could anticipate quorum memberships for specific durations, they might
strategically position themselves to dominate the quorums, jeopardizing the entire network[10].

By instituting a decentralized, randomized election mechanism, the resource commitment
required from malicious actors to launch a successful attack becomes prohibitively high,
rendering such endeavors economically unfeasible[7]. While there are myriad methodologies to
orchestrate fair, randomized elections of eligible nodes, the specifics of such methods are beyond
this paper's scope. It is imperative for implementers adhering to this paper's guidelines to
judiciously select both a staking protocol for eligibility and an election protocol.

The frequency of election intervals is another pivotal aspect when constituting long-lived
masternode quorums. Overly frequent elections might engender consensus disarray, whereas rare
elections could expose the network to potential threats and amplify attack avenues. The optimal
balance for election intervals, while crucial, is not explored in this paper but remains a salient
security consideration for any protocol developed in alignment with this paper's specifications.

When the aforementioned considerations are meticulously addressed, the consensus mechanism
delineated in this paper surpasses the Byzantine Fault Tolerance of conventional Proof of Work
and Proof of Stake networks, especially when the network encompasses two or more Farmer
Quorums. The extent of the consensus mechanism's BFT is intrinsically linked to the number of
operational Farmer Quorums|[11].

Maglevs Hash Ring: A Consistent Account-Based Entrypoint for Transactions

The consensus mechanism delineated in this paper commences with a pivotal step: ensuring
consistent initial allocation of transactions based on their origin[12]. Specifically, transactions
emanating from the same signer must invariably be allocated to an identical initial quorum.
However, this does not imply that the designated quorum is solely responsible for the
transaction's validation or execution.

Given the optimistic nature of our mechanism—where validation is delegated to a subset of
validators constituting an LLMQ and subsequent validation stages are streamlined—it becomes
imperative to maintain transaction sequencing[13]. Especially for transactions contingent on the
validity of their predecessors, it's crucial to validate them only post the validation of their
dependencies. By designating a consistent quorum as the entry point for all transactions from a
particular signer, we can efficiently sequence interdependent transactions with minimal
interquorum communication[14].

Within the entrypoint quorum, nodes construct a dependency graph, which is subsequently
allocated to the Decentralized Task Scheduler[15]. Each vertex in this graph encapsulates the
status of its corresponding dependency, ensuring streamlined processing by eliminating
redundant processing of the same dependency. This meticulous approach guarantees that
transactions (and their respective dependencies) are processed sequentially.

Moreover, they are allocated to the quorum equipped with the requisite data and computational
resources, optimizing both execution and validation[16]. To realize this consistent allocation, we
advocate for the Maglevs Hash Ring algorithm—a renowned consistent hashing algorithm
extensively employed in distributed systems for task distribution among worker nodes[17]. Our
preference for Maglevs Hash Ring stems from its robust open-source library, which has been
rigorously tested and validated. We firmly believe in leveraging established, proven algorithms
over crafting new ones from the ground up.

Decentralized Task Scheduler

A paramount objective of our proposed system is to eliminate single points of failure while
optimizing efficiency and throughput. To this end, we introduce a decentralized task scheduler
predicated on data locality and quorum backpressure[18]. This scheduler is adept at allocating
transactions within a specific farmer quorum and can also delegate transactions to other
quorums. Notably, the task scheduler employs a multifaceted allocation strategy. Initially, it
assesses data locality. In scenarios where requisite data for transaction processing is
non-local—indicating dependencies on transactions processed by other quorums—the scheduler
prioritizes the quorum responsible for those dependencies[19].

However, if the data is local but the quorum is experiencing significant backpressure, the
scheduler might still delegate the transaction (and potentially its dependencies) to other
quorums[20]. Furthermore, the scheduler can opt to retain dependencies locally, transmitting
only the processed data to the designated quorum[21]. This dynamic, decentralized task
allocation mechanism provides the network with a level of adaptability that is often overlooked.
By facilitating parallel transaction processing with maximal efficiency, the network's
transactional capacity is significantly enhanced[22].

The scheduler also possesses insights into the backpressure of other quorums, enabling it to
judiciously determine transaction allocation. This ensures that transactions aren't relegated to
quorums lacking immediate processing capacity. Importantly, this mechanism operates
asynchronously, ensuring backpressure metrics are updated as needed without excessive resource
consumption|[23].

Decentralized Task
Scheduler

[Component]

|

| -

|

| (

! \ \\A

| . Network
- Local Job Pool Remote Job Pool Forwaptzlt;:lgjob S
: [Component] [Ccmponentl [Component]

1 \

| / \A

| Virtual Task

1 Event Router Processor

| [Component] [Component]

|

[Component] Decentralized Task Scheduler - Farmer Node

The decentralized task scheduler's efficacy hinges on a sophisticated algorithm, underpinned by
an efficient network transport layer facilitating both intra- and inter-quorum communication[24].
The scheduler contains three distinct queues: a local execution queue, an intra-quorum remote

execution queue, and an inter-quorum forwarding queue. The local execution queue implies that
the transaction will populate the local mempool and be executed by the local node. Conversely,
the remote execution queue indicates that while the transaction will be processed within the
quorum, the local node might not execute it promptly. The inter-quorum forwarding queue
designates the transaction for execution by another quorum[25]. The intricacies of this process
are demonstrated by the subsequent decentralized task scheduling decision tree that provides a
visual representation of the underlying algorithm:

Scheduler Decision Tree

Decentralized Task Scheduler

Check Dependencies LR
Mempool
Task
Scheduler
) All
High . No—=(" Dependencies
Backpressure Exist Locally?,
Yes, Transmit Transaction
to Remaining Quorum Nodes
Yes,Enqueue Transaction
No,Remote Pool Job Execution
Local Pool Job Execution
Forwarding
Ping Local
Quorum .
- Remote Pool Forwarding Pool Local Pool
Dependencies
No, Place the Transaction
el d Broadcast
Calcu aEe & IUp ki Backpressure to Peers
Dependencies Perform the Job e .
Backpressure

on Remote
Exist?

Fetch Dependencies
&
Create Bundled
Atomic Transaction

External

Quorum

Backpressure computation is integral to the decentralized task scheduling algorithm, and its
formula is delineated below:

Ty = > (tgr- - tg)

El,ng = a

In=T+T+1T;
P=1+logy, ((I-i—"gﬂ,mavgm__g) + (Wi T mave,,) + (W Tf,m})
L={P,Py, Ps,...,P,}
(Bp — min(L))
(max(L) — min(L))

LN, =

Where:

T = Total time to complete all tasks in q
q = The queue the formula is applied to
avg = Average

m = Aggregate of queues

Il = local queue

r = remote queue

f = combined forwarding queues

W = weighted time to complete all tasks'
P = weighted backpressure of all queues
L = backpressure list of local node and peers
LNb = Log Normalized Backpressure List

t =Total time take to complete task q1

Left-Right Mempool for Concurrent Execution of Pending Transactions

A vital component of any scalable system is concurrency management. The prevention of data
races, and the guarantee of, at the very least, eventual consistency, is paramount[26].
Furthermore, any system that employs concurrency in a safe manner must consider the potential
for bottlenecks. Often, when a concurrency enabled data structure is used to conduct a lot of
short order operations, the process of guaranteeing exclusive access, read only access, or other
methods for preventing data races becomes the bottleneck itself[26].

In the case of transaction processing in a P2P compute system, verifying and proving that a given
transaction is valid is typically an operation that takes micro to milliseconds. The locking and

! Weight is a predefined, hardcoded number for each queue

unlocking of the underpinning data structures may take just as long, if not longer, as the
processing of the transaction[26].

In this case, acquiring mutually exclusive locks or read-only locks while pending writes continue
to pile up can become a significant bottleneck.

The Left-Right Concurrency Management Model

In the Left-Right concurrency management model, a Left-Right “wrapped” data structure has a
“Read Only” and a “Write Only” copy of the data structure. The “Read Only” version issues
“read handles” to consuming threads, and can have a theoretical unlimited number of them up to
the upper bound of the machine's RAM memory.

The “Write Only” version can only have a single copy that can be accessed by a single thread
without locks. If multiple access points for writes are needed, the write handle must be wrapped
in an atomic reference counter and mutually exclusive lock. Read handles maintain an epoch
counter. When a read begins within a given handle the handle’s epoch counter increases by 1,
and when it completes it increments by 1 as well.

Epsch Epoch __'_pm";'l-
- , ounter
Lounter: & Counter: 9
! 16
= Process = Procoss = Procoss
 —
Read
Write ™ Process

If all read handles have an epoch counter that is sitting on an even number, it is safe for the
pointers to the “Read Only” copy and the “Write Only” copy to “switch”. This provides
processes consuming the read handles access to all of the writes since the previous refresh.

Epach
Courder: 16

Epcdh
Counbsr &

- Frocess - ProCESS - Frocess

. T
White T- | Pmeess

Herein we propose using the left-right concurrency primitive to scale reads within the proposed
system without preventing writes to the underlying data structure[27]. Left-Right is a lock-free
concurrency enabling mechanism that relies on smart pointers, a counter, and consumes
additional RAM memory on the machine using it[27]. In return, any data structure that is
left-right enabled is able to scale reads significantly beyond any other concurrency enabled data
structures[28][29].

This is a powerful arrow in the quiver of a systems engineer seeking to build a scalable system.
For the sake of the BFT consensus mechanism described herein, we explore using the Left-Right
mechanism on the local copy of the mempool to enable extremely high throughput of
transactions locally[27]. The Left-Right wrapped local mempool copy enables a multi-core
approach to the transaction validator unit, wherein validator cores (threads) can access the
mempool, access current state and pending transactions via dependency graphs, and efficiently
process transactions[29].

Channel .
Receiver Write Thread Write

[Software [Software Handle
Component] Component] [Software
Component]
— — — — > Athread safe 4+ — — — Athread —_—
message receiver exclusively A Smart Pointer
that enables other responsible for that has exclusive
threads to send mutating the write access to the
data to the thread underlying data underlying data
responsible for the structure structure
component

Read Handle

Factory
[Software
Component]

Epoch Counter Aware Smart Pointer,

A producer of
Read Only Access
Smart Pointers to
the underlyingg
data structure

[Container: Left-Right Mempool]

Left-Right Wrapped State Database: Enhancing Concurrent Access to Network State

Efficient access to pending transactions in the mempool is pivotal for enhancing local
throughput. However, the validity of these transactions invariably hinges on the current state.
Consequently, accessing the current state can emerge as a significant bottleneck, potentially
surpassing the challenges posed by accessing pending transactions in the mempool[30]. The
intricacies of state storage surpass those of a mempool.

While mempools primarily store pending transactions, their dependency graphs, and maintain a
transient cache of processed transactions, state storage demands a more persistent approach. It
necessitates the enduring storage of accounts, transactions, program access, and other network
dependencies while ensuring data availability, regular state transitions, and network
consistency[31].

The Left-Right concurrency model, in this context, is arguably even more apt for facilitating
concurrent access to the local copy of the global network state than for the mempool. In tandem,
these models forge a formidable data structure duo, propelling transaction processing throughput
to unprecedented scales[27]. Presented below is a proposed state store architecture, designed to
synergize with the left-right mempool and a concurrent Validator Unit employing a multi-core
strategy.

Integral DB - a Left-Right Wrapped Persistent Database with Merkle Proofing:

Table Index

A reference to the cormesponding Ir-
handle pairs is stored within an in-
memory index which is the used to by
client to interact with each table's trie

Namespaces/Tables

points to the underlying server's

backing database mechanism.

Table 1
| I :
| ReadHandle H '
| | B LR Trie
| H i

LR Trie

|
|
|
WriteHandle | Each table gets its own trie which
|
|
|

YYYyY

. backing storage
WriteHandle

Table 2

LR Trie

ReadHand e

This architecture champions lock-free access to state. When combined with lock-free access to
the mempool within a multi-core validator unit framework, it paves the way for Requests Per
Second (RPS) and, by extension, local Transactions Per Second (TPS) to achieve web-scale.

Validator Unit & Validator Cores for Optimistic Transaction Processing

Herein we have made reference to a “Validator Unit” and a “multi-core” architecture without
much detail. A multi-core validator unit architecture is one in which multiple transactions, or
subsets of transactions, can be processed simultaneously within the same unit[32]. The proposed
architecture is intended to be combined with the proposed left-right enabled mempool and state
store described above.

Theoretically, this approach could be applied to mutually exclusive locked and read-write locked
data structures as well, albeit with some degree of performance degradation as lock acquisition
would potentially become and/or create a bottleneck in performance[33]. In the multi-core
validator unit, each core (thread) has access to a read handle of the necessary data structures
described herein (mempool and state store), and can concurrently access, in read-only mode, the
data stored in each[34].

Since the transaction validation protocol is largely read only, or can be adjusted to be purely read
only, i.e. the underpinning data is not changed, and is not written back to the underpinning data
structure via the same handle, if at all, this model works well for high throughput transaction
processing[35].

Each core streams a subset of pending transactions allocated to the unit's mempool and works on
the subset it is allocated, executing the validation/verification protocol. In a network that enables
compute as well, any compute can also be handled by the core, if the virtual machine(s) allow
parallel processing, or have global locks enabled to prevent race conditions[36]. In models that
separate compute from consensus, these cores can fork(); exec(); the program responsible for any
compute workloads. These specificities are outside of the scope of this paper, however.

Once the transaction(s) have been processed by the core, the core can use message passing, a
queue, or some other mechanism for communicating it’s completion of a given transaction or
subset of transactions to wherever it needs to communicate such information, i.e. the mempool
write thread to remove the pending transaction from the mempool and write it to the LRU cache,
the transport/broadcasting mechanism in the local client for communication to the network, etc.

In this case, given that we are proposing a dual-scalability model, we propose that these cores,
aside from sending the signal to remove the tx from the mempool to the write handle for the
mempool, we also suggest communication to the quorum responsible for the aggregation of
votes, in our model called the “harvester” quorum.

These votes inform the harvester quorum that the local node has validated (or invalidated) a
given transaction, and allow it to either begin aggregating votes for the given transaction, or add
the vote to its ongoing ballot of transaction processing nodes, in our proposed model known as
“farmers”.

\ . /
| \ Validator Core | |
|\ Core Launcher | |
\ [Software [Software |
I \ Component] Component] | |
| \ A replicable thread ~ T T 7 7 Athread producer | I
that executes ~ thattakes
| \ transaction dlres_:tlons frO[n the / I
\ validation protocol, Validator Unit via |
| \ ﬂ including fork() -> the Decentralized | I
exec() any N Task Scheduler
| \ // program N N | I
\ interactions, and ~ |
/ accesses ~
l \\ / scheduled ~ 'I I
/ transactions and ~N
l Read / account data via ~ Read |
lock free read N
Handle / ~ Handle
handles ~
[Software / ~ [Software I
I Component] / AN Component]
| A Lock Free Read A Lock Free Read |
Only Access Point Only Access Point
| for the Backing for the Backing I
| Data Structure Data Structure |
Container: Validator Unit
L validatorUniq] o _J

Dealerless Distributed Key Generation for Trustless Secure Threshold Signatures

In the realm of distributed systems, the generation of keys in a decentralized manner is
paramount to ensuring robustness against single points of failure and eliminating the reliance on
trusted entities. The proposed system herein necessitates the utilization of a Dealerless
Distributed Key Generation (DKG) scheme, specifically for the creation of quorum
public/private key pairs and the orchestration of a threshold signature scheme. Our choice for

2 The Core Launcher can produce an arbitrary number of validator cores at any given time to concurrently process non-dependent transactions

this pivotal component is the HoneyBadger BFT Dealerless Distributed Key Generation
implementation, which has garnered acclaim for its rigorous auditing, extensive testing, and
proven security[37].

The intrinsic security of the threshold signature remains a cornerstone of this proposed system.
Rather than venturing into the intricate and risky domain of crafting a DKG scheme from the
ground up, it is judicious to lean on implementations that have withstood the test of time and
rigorous academic scrutiny. While our system is architected around the HBBFT scheme, it is
worth noting that this choice is not immutable.

There exists a plethora of audited, rigorously tested, and academically endorsed Dealerless
Distributed Key Generators that could seamlessly integrate into this system. Notable among
these are the schemes delineated in "Distributed Key Generation in the Wild"[38] and "Fast
Multiparty Threshold ECDSA with Fast Trustless Setup"[39].

Farmer-Harvester Model for Parallel Processing & Scalable Batched State Updates

The model delineated in this paper draws inspiration from the worker-collector paradigm
prevalent in parallel stream processing models within distributed systems[40]. This paradigm, an
alternative to the conventional Master/Worker model, hinges on the collaboration between
"helpers" and "workers" [41]. In classical distributed systems, which prioritize the efficient
parallel processing of data streams, an emitter announces a task. Subsequently, the collector
disseminates this task to the workers. Upon task completion, the workers relay the results back to
the collector for state integration. This paper proposes modifications to this model to
accommodate specific characteristics imperative for Peer-to-Peer consensus.

1. Byzantine Fault Tolerance: The model emphasizes redundancy in task completion within
a quorum. This ensures that rogue quorum members cannot alter the state without the
confirmation of correct and valid computation[42].

2. Decentralized Task Allocation: Instead of a centralized collector node, which could

become a single point of failure, the model advocates for decentralized task
scheduling[43].

3. Harvester Quorum: This introduces scalable batches of state updates and an additional
layer of security and Byzantine fault tolerance[44].

4. Eligibility and Election: While this paper doesn't delve into specific eligibility criteria, it
does underscore the importance of stringent eligibility requirements. Coupled with a

randomized, fair election process for quorum membership, this ensures enhanced security
against potentially malicious nodes[45].

Byzantine Fault Tolerance

The farmer-harvester model, with its modifications, emerges as a robust framework for the
parallel processing of transactions in a Byzantine fault-tolerant peer-to-peer network[42]. The
system's design ensures continued operation as long as ((0.6*mf)/nf) + 0.6mh nodes remain
non-Byzantine. This means that as long as 60% of a single farmer quorum and 60% of either the
active harvester quorum or backup harvester quorum members are honest and active, the network
remains secure, while every other farmer quorum can handle as many as 59.9999% malicious
and/or faulty nodes.

Comparatively, this model offers a higher Byzantine fault tolerance than traditional PoS
implementations like Ethereum's, which stands at =~ 33% BFT. The network's overall BFT is
scalable, increasing with each additional farmer quorum. For instance, with ten farmer quorums,
the network can tolerate all but one farmer quorum being entirely faulty or malicious. This
results in a network BFT of up to = 60% once the network reaches 100 or more farmer
quorums.

BFT = N ~ N

mvVf t
W here:

BFT = Byzantine Fault Tolerance

N = Number of Nodes
m = Malicious

f = Faulty

t = Total

Given the above formula for Byzantine Fault Tolerant, we can solve for the systems BFT under
different conditions with regards to the number of farmer quorums that can form and the size of
the quorums:

1. Single Farmer Quorum Scenario with 25 nodes in each quorum:

a. N = 0.4N + 0.4N = 0.8N
myvf

Byzantine Fault Tolerance (%)

b. Nt = 2N

6.59991N

60.1901N

c. BFT = N + N
mvVf t
d. BFT = 0.4
2. Two Farmer Quorum Scenario with 25 nodes in each quorum:
a. vaf = 0.5999N + 0.4N + 0.4N = 1.39999N
b. N, = 3N
c. BFT = N =~ N
mVf t
d. BFT = 0.46663
3. Ten Farmer Quorum Scenario with 25 nodes in each quorum:
a. vaf: (9 x 0.59999N) + 0.4N + 0.4N =
b. N = 11N
c. BFT = N + N
mvVf t
d. BFT = 0.5636
4. One Hundred Farmer Quorum Scenario with 25 nodes in each quorum:
a. vaf= (99 x 0.59999N) + 0.4N + 0.4N =
b. Nt = 101N
c. BFT = N =~ N
mVf t
d. BFT = 0.5959

60.0

57.5

50.0 +

47.5 1

40.0 4

Byzantine Fault Tolerance vs. Number of Farmer Quorums

T
10

T
20

T
30

T T T
40 50 60
Number of Farmer Quorums

T
70

T
80

T
90

T
100

Scalability of Throughput

In distributed systems, the scalability of throughput is a paramount concern. The model
presented here addresses this by allowing each farmer quorum to work on a distinct subset of
transactions, each with its allocated dependency graph. When integrated with the Left-Right
Mempool and State Store, an individual farmer node can process an estimated 565,000 native
token transfer transactions per second. Furthermore, depending on the computational complexity
of the smart contract transactions, this number ranges between 30,000 and 100,000 transactions
per second[40].

A notable feature of this model is that only a 60% quorum threshold is required to validate a
transaction. This allows subsets of quorum members to concurrently work on different
transaction subsets. Assuming optimal task allocation with no redundant transaction processing
beyond the 60% threshold, a total of 7 out of 5 quorum-level transactions can be processed. This
is relative to the number of transactions a single quorum node can process in a given second.
Under a set of assumptions, we can determine the theoretical upper limit:

1. Native Token Transactions take 88.5 microseconds to process’

2. Each validator unit has 50 cores that can parallel process transactions

3. A 60% threshold of quorum members are required to reach consensus on the validity of a
given transaction

4. A perfect allocation scheme is implemented to ensure no redundancy in the transactions
being processed beyond the 60% threshold within the quorum.

5. There are no faulty nodes in the quorum.

Given these assumptions, we can represent the time taken by a single core to process a single
native token transfer as 7.

T = 88.5us

Given that there are 50 cores working simultaneously, the number of transactions processed by a
single node in time T is:

N =50 x (1=T)

Given the 60% validation threshold, if allocated perfectly, for every 5 transactions a given node
can process, the quorum can process 2 more, i.e. 7. This provides us with a ratio of 7:5 or 1.4 as
a multiplier for quorum level transaction processing. Thus the number of transactions processed
by the quorum:

? Benchmarks for per core TPS under Left-Right model

N' =14 X N

We can now solve for N' as follows:

N = 50 x (1 + 88.5pus) = 565,000 native token transfer tps

N' = 1.4 x 565,000 = 791,000 native token transfer tps per quorum

Adhering to the aforementioned assumptions, we can then apply the multiplier for the number of
active Farmer Quorums F to deduce that the theoretical upper limit of transactions per second is
791,000F. In a live network, due to factors such as latency, imperfect task scheduling,
redundancy and bandwidth constraints, these figures may never be fully realized. However,
assuming an average latency of 3 seconds across the network, we can estimate that a minimum
of one-third of these transactions will be processed in full. Given forward error correction, packet
loss leading to transaction drops is unlikely, but will introduce delays when packets require
correction. This results in a more practical TPS value of:

0.94 x (791,000F x (1 + 3)) ~ 247,846F.

We can also determine the practical limit for smart contract transactions by assuming a multiplier
of native token transaction processing time, denoted as SC, where we replace N with
N = 50 x (1 = (SC x T)). Using this revised N definition, we can determine the
practical upper limit of Smart Contract transaction processing[41].

Native Token Transfer Transactions per Second vs Number of Farmer Quorums
le6

2.5

= N
[)
. :

=
(=]
T

Transactions per Second

0.5

2 4 6 8 10
Number of Farmer Quorums

Smart Contract Transactions per Second vs Number of Farmer Quorums
le6
1.0} —®— SC Multiplier: 2.5
-e- SC Multiplier: 5
--@- SC Multiplier: 10
—e- SC Multiplier: 20

0.8r

o
o

o
IS

Transactions per Second

0.2}

0.0

Number of Farmer Quorums

Lastly, because the role of the harvester quorum focuses on 3 non-resource intensive processes:

a. Collecting votes on transactions from farmers asynchronously
b. Building proposal blocks
c. Certifying the validity of Convergence blocks, i.e. state transitions

Harvesters can do a lot of what they are supposed to do in a short amount of time. Armed with
the right data structures, operations that the harvester nodes engage in are low in time complexity
and low in resource consumption, enabling them to scale the number of transactions they can
collect votes on, aggregating them into blocks of transactions, and then collecting the
consolidated final set of transactions to be included in a proposed state transition and certifying
it.

Each quorum has a unique, verifiable distributed secret key, that when each node in the quorum
votes on a given transaction, in the case of farmers, or to certify a state transition, in the case of
harvesters, a threshold vote can be assembled. Once the threshold suggested, 60% herein, has
been reached, the threshold signature can be verified using a public key which is known to all
members of the network. Non-quorum members in the network need not verify every single
signature for every single transaction, along with the validity of the transaction structure, data
and any compute results, they need only verify the threshold signature of the certified block.
Further, harvesters need only verify the threshold signature of the transactions they are collecting
votes on once the threshold is reached, and need not validate the entire transaction itself. Role
specialization, combined with parallel processing, enables the network to move forward fast
without wasting resources on redundant tasks.

Farmer Node 4
Farmer Node 5

Farmer Node 8 Farmer Node 9

Vote Router

Farmer Node 2

Harvester Harvester Harvester
Node 1 Node 2 Node 3

Proposal Block 1

Proposal Block 2

Proposal Block 3

+ hash: Oxabc...def
+ round: 52830
+ timestamp ...

+ hash: 0x123...890
+ round: 52830
+ timestamp ...

+ hash: 0x33d...804
+ round: 52830
+ timestamp ...

+ transactions = {
0x025...: [244, ..., 83] , .

0x49f...: [55, ..., 98],

}
+ claims = {
0x89d... [98, ... 22],
0x32a...: [42, ..., 0]
}
+..

+ transactions = {
0x052...: [4, ..., 63] , .

OxAff.... [155, ..., 8],

}
+ claims = {
0x9d3...: [86, ... 223],
0x3a6...: [254, ..., 20]
}

+ transactions = {
0x04d...: [77, ..., 36] , .

Ox4fe...: [53, ..., 82),

}
+ claims = {
Oxbf3...: [64, ... 23],
6;a69...: [27, ..., 73]
}

The lifecycle of a transaction under this model begins with its reception by nodes in the network,
and subsequent allocation to the ingestion quorum determined using the Maglevs Ring consistent

hashing algorithm. It is finalized when a Convergence Block, containing a reference to the
proposal block responsible for said transaction, is certified, and thus, a new state is accepted by

the network.

Node allocates
transaction to

Decentralized
Task Scheduler
(DTS)

Transaction
Received

by Nodes

Maglevs
Ring Allocates
Transaction to Quorum
Node is an Active
Member of

DTS
Determines it

Transaction

Processed
Locally

Data
Retrieved

Valid Vote

Yes Sent to

Harvester
Quorum

Transaction
is Valid

Invalid
Vote Sent
to
Harvester

should be Processed

Transaction
Placed in
Forwarding

Determines it should
be Forwarded

Transaction
Placed in
Remote

No

Execution
Queue

Exceeds
Threshold

No

Await more

Votes

Using MEYV for Positive Network Outcomes

Node
Forwards
Transaction to
Nodes in
Quorum

Maglevs Ring
Allocates it to
New State
Accepted
Certificate
Yes—» Issued,
Broadcasted

Proposal
Block
Consolidated
into
Convergence
Block

-
—

Transaction
Included in
Proposal
Block

Convergence
Block is Valid

Yes

Threshold
of Votes are that its
Valid

No

|

Transaction
Rejected,
Sender

Informed

In the system delineated herein, every Harvester node is entitled to propose a single block per
round. Given the constraints of the network's maximum block size, and considering the
capabilities of contemporary hardware and infrastructure, it's conceivable that each harvester,
assuming a consistent view of the confirmed yet unfinalized transactions, would propose blocks
that optimize fee revenue[42]. This economic incentive is inherent[43]. While protocols claiming
to eliminate MEV entirely remain unconvincing[44], it's essential to recognize that MEV isn't
intrinsically detrimental[42]. Its negative implications arise when it leads to transaction
censorship, inequitable transaction ordering, or other adverse outcomes[45].

This proposal advocates for harnessing MEV as a positive incentive[46]. When combined with
the conflict resolution protocol delineated in subsequent sections, it can mitigate censorship,
delays, and unfair transaction ordering. Given the harvester's awareness of their position within
the conflict resolution protocol, they can strategically construct blocks to optimize their
post-conflict resolution MEV. This approach ensures that low-fee transactions receive the same
priority as high-fee transactions, fostering a more equitable transaction environment.

Scenarios Illustrating the MEV Model in Action:

Below we provide 3 arbitrary scenarios demonstrating the benefits of the proposed system, and
how through incentive design, MEV can be used to the network's benefit with some limitations
depending on network capacity.

Scenario 1: Balanced Transaction Distribution
Network Configuration:

Number of harvesters: 10

Maximum block size: 25kb

Total transactions pending: 180kb across 1,000 transactions

Fee per byte distribution: Transactions are distributed across 10 buckets, ranging from 0.000001 to 0.01.
Conflict resolution order: Harvester 8, Harvester 3, Harvester 1, Harvester 9, Harvester 4, ...

Qutcome:

Given the conflict resolution order, Harvester 8, being first in line, would prioritize transactions from the highest
fee-per-byte bucket to maximize its revenue. Assuming each transaction is of equal size, Harvester 8 might select,
for instance, 25 transactions from the 0.01 bucket. Harvester 3, next in line, would then prioritize the next highest
fee-per-byte bucket, selecting perhaps 25 transactions from the 0.009 bucket, and so on. This ensures that
transactions across all fee buckets are processed in a balanced manner, optimizing both throughput and revenue for
harvesters.

Scenario 2: High-Volume, Low-Fee Transactions

Network Configuration:
Number of harvesters: 10
Maximum block size: 25kb
Total transactions pending: 180kb, but 70% of the transactions belong to the lowest fee-per-byte bucket.
Fee per byte distribution: Skewed towards the lower end, with the 0.000001 bucket containing the majority
of transactions.
Conflict resolution order: Harvester 5, Harvester 2, Harvester 10, Harvester 7, Harvester 6, ...

Qutcome:

Given the skewed distribution of transactions, Harvester 5, despite being first in the conflict resolution order, might
opt to select transactions from the second or third fee-per-byte bucket to maximize its revenue, leaving a significant
portion of the lowest fee transactions. Subsequent harvesters, recognizing the abundance of low-fee transactions and
their position in the conflict resolution order, would then be incentivized to select from these low-fee transactions,
ensuring they are not left unprocessed.

Scenario 3: Near Maximum Capacity

Network Configuration:
Number of harvesters: 10
Maximum block size: 25kb
Total transactions pending: 240kb, distributed fairly evenly across fee-per-byte buckets.
Fee per byte distribution: Even distribution across buckets.
Conflict resolution order: Harvester 4, Harvester 9, Harvester 2, Harvester 6, Harvester 1, ...

QOutcome:

With the network nearing its maximum transaction capacity for the round, each harvester would be more strategic in
its transaction selection. Harvester 4 might select a mix of high and mid fee-per-byte transactions to fill its block.
Harvester 9, recognizing that many high fee-per-byte transactions have already been selected, might opt for a mix of
mid and low fee-per-byte transactions. This pattern would continue, ensuring a diverse set of transactions are
processed, maximizing both network revenue and transaction throughput.

Certification & Finality

Under the proposed mechanism, a designated group of nodes must concur on the validity of a
proposed state transition. We advocate for the Harvester Quorum to serve as this certification
committee for convergence blocks, given its comprehensive understanding of the system and its
ability to assess the validity of proposed state transitions[47]. Once the convergence block has
been produced, the consolidator/conflict resolver sends the proposed convergence block back to
the harvesters. Harvesters then, internally, vote on its validity. Upon reaching a 60% threshold of
affirmative votes for a given convergence block, a certificate is created. This certificate,
inclusive of the Harvester Quorum's threshold signature, is then broadcasted to the network
alongside the convergence block[48].

Harvesters
Reject Block and
Consider Block
produced by
next miner in
line

40%+ 1 Vote No

Elected
Harvesters Miner(s) LR
Publish Present Vote on Validity of
opos | Convergence Conver encﬁ
Proposa Block to Blogk
Blocks Harvester
Quorum
v A
Elected 60% Vote Yes
Miner(s) Elected
Reso'lve Miner(s)
Conflicts > Build Harvesters
among Convergence Produce
Proposal Block Certificate
Blocks —

A

ﬁetwork Harvesters
Block and Broadcast
transitions to (CETHIEEIEED
Network

new State

This certification process serves dual purposes. Firstly, it signifies that the convergence block has
been validated by an appropriately authorized group of nodes[49]. Secondly, it provides a signal
to initiate the transition process from state t to state t’. Additionally, it can act as a finality signal
for all transactions referenced within the convergence block. This ensures future network
participants can verify the chain/network's history, synchronize with the correct chain, and
minimize potential issues like soft forks and chain reorganizations[50]. This process also marks
the end of one round and the commencement of the next. As proposed, convergence blocks
contain data that aids the network in operating efficiently, such as election information at
specified intervals[51].

Conclusion

In this study, we have presented a novel system for achieving Scalable Byzantine Fault Tolerant
Consensus. This system uniquely facilitates both vertical and horizontal scalability in terms of
throughput, while also ensuring horizontal scalability of fault tolerance. The proposed
architecture amalgamates various innovative technologies and designs, aiming to facilitate
efficient agreement on the network's current state within Peer to Peer networks. This is achieved

even in the presence of potentially malicious actors, all while processing and updating the
network to accommodate hundreds of thousands, if not millions, of transactions every second.

Our assertions regarding the system's performance are not merely theoretical; they are
substantiated with rigorous mathematical models and benchmarking. Based on our findings, the
system's performance surpasses that of any extant peer-to-peer consensus mechanism.
Consequently, it holds the potential to pioneer a web-scale decentralized network that is both
permissionless and trustless. When integrated with complementary technological frameworks,
this system could pave the way for a resilient internet that is resistant to censorship, ensuring the
unfettered flow of information at minimal costs. Furthermore, its capacity to handle workloads
comparable to, or even exceeding, the world's most active financial exchanges is noteworthy.
Ultimately, such a system could revolutionize global social cooperation, enabling collaborative
endeavors that are currently beyond our collective imagination.

[1] Tingling, Middleton & Seron, “Scalability and
Fragility in Bounded-Degree Consensus Network”,
2020

[2] Queralta and Westerlund, “Blockchain for Mobile
Edge Computing: Consensus Mechanisms and
Scalability”, 2020

[3] Yang, et. al, “DispersedLedger: High-Throughput
Byzantine Consensus on Variable Bandwidth
Networks”, October 2021

[4] Kim, et. al, “Byzantine Fault Tolerance Based
Multi-Block Consensus Algorithm for Throughput
Scalability”, 2020

[5] Shang, “Scaled Consensus and Reference
Tracking in Multiagent Networks with Constraints”,
2022

[6] Wang, et. al, “Consensus-Based Clock
Synchronization in Wireless Sensor Networks with
Truncated Exponential Delays”, 2020

[7] Hafid, Hafid & Makrakis, “Sharding-Based
Proof-of-Stake Blockchain ~ Protocols: Key
Components & Probabilistic Security Analysis”,
2023

[8] Barhanpure, Belandor & Das, “Proof of Stack
Consensus for Blockchain Networks”, 2020

[9] Wang, et. al., “LRBFT: Improvement of practical
Byzantine fault tolerance consensus protocol for
blockchains based on Lagrange Interpolation”, 2023
[10] Gans & Holden, ‘“Mechanism Design
Approaches to Blockchain Consensus”, 2022

[11] Akbar, et. al. “Distributed Hybrid
Double-Spending Attack Prevention Mechanism for
Proof-of-Work and Proof-of-Stake Blockchain
Consensus”, 2021

[12] Yang & Shen, “Blockchain Consensus
Algorithm Design Based on Consensus Hash
Algorithm”, 2019

[13] Olszak, “HyCube: A distributed hash table based
on a variable metric”, 2017

[14] Zeng, et. al, “AreaHash: A Balanced and fully
scalable consistency hashing algorithm”, 2022

[15] Bienkowski, et. al, “Dynamic Load Balancing in
Distributed Hash Tables”, 2005

[16] Yin, et. al.,, “Proof of Continuous Work for
Reliable Data Storage Over Permissionless
Blockchain”, 2022

[17] Drakatos, et. al., “Rapid Blockchain Scaling
with Efficient Transaction Assignment”, 2021

[18] Stavrinides & Karatza, “Scheduling
Bag-of-Task-Chains in Distributed Systems”, 2019
[19] Tantitharanukul, Natwichai & Boonma, “A
Heuristic Algorithm for Workflow-Based Job
Scheduling in Decentralized Distributed Systems
with Heterogeneous Resources”, 2015

[20] Jovanovic & Bender, “Task scheduling in
distributed systems by work stealing and mugging - a
simulation study”, 2002

[21] Pop, “A Fault Tolerant Decentralized Scheduling
in Large Scale Distributed Systems”, 2010, pp.
566-588

[22] Tantitharanukul, Natwichai & Boonma,
“Workflow-Based Composite Job Scheduling for
Decentralized Distributed Systems”, 2013

[23] Wang, Barnard & Ying, ‘“Decentralized
scheduling and locality for data-parallel computation
on peer-to-peer networks”, 2015

[24] Convolbo, et. al., “GEODIS: towards the
optimization of data locality-aware job scheduling in
geo-distributed data centers”, 2018

[25] Bu, Rao & Xu, “Interference and locality-aware
task scheduling for MapReduce applications in
virtual clusters”, 2013

[26] Dice, Marathe & Shavit, “Scalable reader-writer
locks”, 2012

[27] Ramalhete & Correia, “Left-Right - A
Concurrency Control Technique with Wait-Free
Population Oblivious Reads”, 2015

[28] Shapiro, et. al., “A comprehensive study of
Convergent and Commutative Replicated Data
Types”, 2011

[29] Herlihy & Shavit, “The art of multiprocessor
programming”, 2008

[30] Freitag, Kemper & Neumann,
“Memory-Optimizaed Multi-Version Concurrency
Control for Disk-Based Database Systems”, 2022
[31] Kleppmann, Beresford & Svingen, “Online
Event Processing: Achieving Consistency Where
Distributed Transactions Have Failed”, 2019

[32] Alperen, et. al, “An Evaluation of Task-Parallel
Frameworks for Sparse Solvers on Multicore and
Manycore CPU Architectures”, 2021

[33] Wang, et. al, “Meshed Bluetree:
Time-Predictable Multimemory Interconnect for
Multicore Architectures”, 2020

[34] Gregorio, “A distributed hardware algorithm for
scheduling dependent tasks on multicore
architectures”, 2009

[35] Zhang, et. al.,, “Towards Concurrent Stateful
Stream Processing on Multicore Processors
(Technical Report)”, 2020

[36] Li, et. al.,, “SwitchTx: Scalable In-Network
Coordination for Distributed Transaction
Processing”, 2022

[37] Miller, et. al., “The Honey Badger of BFT
Protocols”, 2016

[38] Kate, Huang & Goldberg, “Distributed Key
Generation in the Wild”, 2012

[39] Gennaro & Goldfeder, “Fast Multiparty
Threshold ECDSA with Fast Trustless Setup”, 2019
[40] Cachin, et al, “Scalable Byzantine
Fault-Tolerant Agreement in Directed Dynamic
Networks”, 2020

[41] Danelutto, Torquati & Kilpatrick, “State access
patterns in embarrassingly parallel computations”,
2016

[42] Mazorra, Reynolds & Daza, “Price of MEV:
Towards a Game Theoretical Approach to MEV”,
2022

[43] Sakiz & Gencer, “Blockchain Technology and its
Impact on the Global Economy”, 2019

[44] Yang, et. al., “SoK: MEV Countermeasures:
Theory and Practice”, 2022

[45] Carrillo and Hu, “MEV in fixed gas price
blockchains: Terra Classic as a case of study”, 2023
[46] Piet, Nair & Subramanian, “MEVade: An
MEV-Resistant Blockchain Design”, 2023

[47] Naserameri, “Improving Privacy in Blockchain
by Combining Group Signature and Groth-Sahai
Certification System”, 2022

[48] Fu, Du & Li, “Distribution of CA-Role in
Block-Chain Systems”, 2018

[49] Azan, et. al., “Proposal for an integrative
performance framework based on Distributed Ledger
Technology dedicated to higher education students
entering the labor market”, 2022

[50] Koutanov, “Strict Serializable Multidatabase
Certification with Out-of-Order Updates”, 2021

[51] Zou, et. al., “ArchivesChain: Distributed PKI
Archives System”, 2022

